Accelerating nonlinear reconstruction in laminar optical tomography by use of recursive SVD inversion.

نویسندگان

  • Mengyu Jia
  • Jingying Jiang
  • Wenjuan Ma
  • Chenxi Li
  • Shuang Wang
  • Huijuan Zhao
  • Feng Gao
چکیده

Image reconstruction in the most model-based biophotonic imaging modalities essentially poses an ill-posed nonlinear inverse problem, which has been effectively tackled in the diffusion-approximation-satisfied scenarios such as diffuse optical tomography. Nevertheless, a nonlinear implementation in high-resolution laminar optical tomography (LOT) is normally computationally-costly due to its strong dependency on a dense source-detector configuration and a physically-rigorous photon-transport model. To circumvent the adversity, we herein propose a practical nonlinear LOT approach to the absorption reconstruction. The scheme takes advantage of the numerical stability of the singular value decomposition (SVD) for the ill-posed linear inversion, and is accelerated by adopting an explicitly recursive strategy for the time-consuming repeated SVD inversion, which is based on a scaled expression of the sensitivity matrix. Experiments demonstrate that the proposed methodology can perform as well as the traditional nonlinear one, while the computation time of the former is merely 26.27% of the later on average.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries, inversion formulas, and image reconstruction for optical tomography.

We consider the image reconstruction problem for optical tomography with diffuse light. The associated inverse scattering problem is analyzed by making use of particular symmetries of the scattering data. The effects of sampling and limited data are analyzed for several different experimental modalities, and computationally efficient reconstruction algorithms are obtained. These algorithms are ...

متن کامل

Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography.

PURPOSE A computationally efficient algorithm (linear iterative type) based on singular value decomposition (SVD) of the Jacobian has been developed that can be used in rapid dynamic near-infrared (NIR) diffuse optical tomography. METHODS Numerical and experimental studies have been conducted to prove the computational efficacy of this SVD-based algorithm over conventional optical image recon...

متن کامل

Multigrid algorithms for optimization and inverse problems

A variety of new imaging modalities, such as optical diffusion tomography, require the inversion of a forward problem that is modeled by the solution to a three-dimensional partial differential equation. For these applications, image reconstruction can be formulated as the solution to a non-quadratic optimization problem. In this paper, we discuss the use of nonlinear multigrid methods as both ...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

Direct Reconstruction Methods in Optical Tomography

Optical tomography is a biomedical imaging modality that uses scattered light as a probe of structural variations in the optical properties of tissue [1]. In a typical experiment, a highly-scattering medium is illuminated by a narrow collimated beam and the light that propagates through the medium is collected by an array of detectors. In first generation systems, the sources and detectors are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical optics express

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2017